
Constraint Satisfaction Problems (CSPs)

A binary constraint satisfaction problem consists of

• A set of n variables {x1, x2, …, xn} with respective finite
domains D1, D2, …, Dn

– let D = D1 D2 … Dn

– let d be the size of the largest domain

• A set of e binary constraints {Cij }

– Cij represents a constraint between variables xi and xj
specifying the set of legal pairs of values

– assume that Cij (u, v) = Cji (v, u)

Constraint graph

A constraint graph is a directed graph with n nodes and e edges

• Each variable is a node

• Each constraint Cij is an edge from node xi to node xj

Variables {x1, x2, x3, x4, x5}

Constraints

– C31 = {(a,b), (a,c), (b,c)}

– C32 = {(a,b), (a,c), (b,c)}

– C34 = {(a,b), (a,c), (b,c)}

– C35 = {(a,b), (a,c), (b,c)}

– C54 = {(a,b), (a,c), (b,c)}

x1

x4

x3

x2

x5

{a, b, c} {a, b, c}

{a, b}

{a, b}{a, b}

Backtrack search

procedure bcssp(n)

consistent = true

i = initialize()

loop
if consistent then (i, consistent) = label(i)

else (i, consistent) = unlabel(i)

if i > n then return “solution found”

else if i = 0 then return “no solution”

endloop
end bcssp

Chronological backtracking: initialize

function initialize()

for i = 1 to n

CDi = Di /* initialize current domains */

endfor
return 1 /* return the first variable */

end initialize

Chronological backtracking: label

function bt-label(i)

for each vi CDi do
Set xi = vi and consistent = true

for each xj that has been previously assigned do
if Cij(xi, xj) then

Remove vi from CDi and set consistent = false

Unassign xi and break inner loop

endif
if consistent then return (i+1, true)

endfor
return (i, false)

Chronological backtracking: unlabel

function bt-unlabel(i)

h = i – 1 /* Backtrack to previous variable */

CDi = Di

Remove current value assigned to xh from CDh

Unassign xh

if CDh is empty then
return (h, false)

else
return (h, true)

end bt-unlabel

Example

a b c

c aba cb a cb

ba ba bababa

x1

x2

x3

Arc consistency

• An arc (i, j) in a constraint graph G is arc consistent with
respect to domains Di and Dj iff

 v Di, w Dj : Cij(v, w)

– A graph G is arc consistent iff all its arcs are arc consistent

• Let P = D1 D2 … Dn and P = D 1 D 2 … D n s.t.
P P . P is the largest arc consistent domain for G in P iff

– G is arc consistent wrt P

– there is no P such that P P P and G is arc
consistent wrt P

• Theorem: The largest arc consistent domain exists and is
unique

AC-5

• AC-5 is a generic arc consistency algorithm

– uses two abstract procedures ArcCons and LocalArcCons

– can be specialized to either AC-3 or AC-4

– can be specialized to exploit properties of constraints (e.g.,
functional, anti-functional, monotonic constraints)

Queue elements in AC-5

• AC-5 maintains a queue of elements of the form ((i, j), w)

– (i, j) is an arc, and w is a value in Dj that has been removed
justifying the need to reconsider arc (i, j)

– Enqueue(j, , Q) inserts all elements of the form ((i, j), w)
onto the queue Q such that (i, j) is an arc and w

j

i

k

 removed from Dj in making
Cjk consistent

ArcCons and LocalArcCons

function ArcCons(i, j)

Returns = { v Di | u Dj ij(v, u) }

– Removing elements in from Di makes (i, j) arc consistent

function LocalArcCons(i, j, w)

Assumes that w has been removed from Dj

Returns such that 2 1 where

1 = { v Di |Cij(v, w) and u Dj ij(v, u) }

2 = { v Di | u Dj ij(v, u) }

Arc consistency with AC-5
procedure AC-5(G)

InitQueue(Q)

for each (i, j) arc(G) do
= ArcCons(i, j)

Enqueue(i, , Q)

Remove(, Di)

endfor
while not EmptyQueue(Q) do

((i, j), w) = Dequeue(Q)

 = LocalArcCons(i, j, w)

Enqueue(i, , Q)

Remove(, Di)

endwhile
end AC-5

Counting queue operations in AC-5

• Introduce the Status of (edge, value) pairs such that

– InitQueue sets Status((k, i), v) = present if v in Di
 = rejected otherwise

– Enqueue sets the Status of each queued item to suspended

– Dequeue sets the Status of dequeued item to rejected

• AC-5’s loops preserve the invariant that Status((k, i), v)
= present iff v in Di

= suspended iff v not in Di and ((k, i), v) on the Q
= rejected iff v not in Di and ((k, i), v) not on the Q

AC-5 enqueues and dequeues at most O(ed) items

AC-3

• For arbitrary constraints ArcCons is O(d2)

• AC-3 is essentially AC-5 in which LocalArcCons is
implemented using ArcCons

AC-3 is O(ed3)

AC-4

• If ArcCons is O(d2) and LocalArcCons is O(d)then AC-5 is O(ed2)

• LocalArcCons(i, j, w) iterates through the “supports list” of w for
edge (i, j), decrements “support counts”, and computes as the
set of values whose “support counts” go to 0

LocalArcCons is O(d) and ArcCons is O(d2) so AC-4 is O(ed2)

O(d2)

O(d)

O(d2)

O(d2)

i j

u
v
w

u {u}
v {u, v}
w {v, w}

2
2
1

Support
counts

Support
list

Time per edge
Space per edge

Functional constraints

• A constraint C is functional wrt a domain D iff for all v D
there exists at most one w D such that C(v, w)

function ArcCons(i, j)

 = {}

for each v Di do
if fij(v) Dj then = {v}

return

end ArcCons

function LocalArcCons(i, j, w)

if fji(w) Di then return {fji(w)}

else return {}

end LocalArcCons

ArcCons is O(d)
LocalArcCons is O(1)

AC-5 is O(ed)

Classes of constraints

• Other classes of constraints for which AC-5 is O(ed)

– anti-functional

– monotonic

– piecewise functional

– piecewise anti-functional

– piecewise monotonic

